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Characteristic Impedances of the Slotted Coaxial Line*
JADWIGA SMOLARSKATt

Summary—The characteristic impedance for the two possible
TEM modes is calculated for a slotted coaxial line whose outer walls
have a zero thickness. Conformal mapping is used in the calculations.
The characteristic impedance for a slotted coaxial line is calculated
in an approximate way for outer wall thickness different from zero.

INTRODUCTION
§§ S is known, in a cylindrical system of conductors

having the cross section in Fig. 1(a) two modes

of TEM waves can propagate. These modes cor-
respond to the solution of the Laplace equation in the
plane of the cross section for the boundary values shown
in Fig. 1(b) and 1(c).

The wave impedance of the first of these modes was
calculated by Collin! who used a variational method of
analysis in which he neglected the thickness of the outer
walls.

Bochenek? calculated the wave impedance for this
first mode by using a conformal mapping method in
which he neglected the inside conductor, but took into
account the thickness of the outer walls.

The method of conformal mapping leads to the de-
termination of the wave impedance in the previous case
as well; i.e., when we neglect the thickness of the outer
walls and take into account the central conductor, the
mapping can be performed in an exact way. At the
same time, by making simplifying assumptions which
do not give rise to any reservations in cases of practical
interest, the approximate value of the impedance may
be found without neglecting either the central con-
ductor or the thickness of the walls.

In the case of the other mode of transmission [Fig.
1(c)] the conformal mapping method also leads to the
determination of the impedance.

The subject of this report is to present the results of
an analysis made along these lines and to compare them
with the results published in both of the above-men-
tioned articles.

Mopke oF THE First TYPE

The boundary problem for Laplace’s equation [Fig.
1(b)] is transformed successively, by means of con-
formal mapping,® into boundary problems I, II, III
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Fig. 1—System of conductors and the TEM modes examined. (a)
Cross section of the system of conductors, (b) first transmission
mode, {c) second transmission mode.
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Fig. 2—Boundary problems obtained by successive conformal map-
pings. Arabic numerals in the circles refer to points corresponding
to each other. The boundary conditions for the function # are
also given. (a) Boundary problem I—plane w, (b) boundary prob-
lem [I—plane 7, (c) boundary problem ITI-—plane W.

[Fig. 2(a)-2(c)]. The splitting into successive trans-
formations permits a better orientation as regards their
character.

The first mapping has the form

w = lge z. . (1>
The second is the Christoffel-Schwarz integral:
1 T t— vy)dt
©=— ¢ =) +1g R ()
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Fig. 3—Characteristic impedance as a function of the parameter 8.

In the system corresponding to boundary problem II
the wave impedance is defined by only one parameter
B. The value of this impedance is readily found by
means of the third mapping, which is also of the Chris-
toffel-Schwarz type, and which reduces this system to
the system of a plane ideal line (without boundary dis-
tortions). This mapping has the form

- ler at +’L7L.
o V-0 =80+1)

A simple calculation gives a formula for the wave im-
pedance as a function of 8:
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and which is given in Fig. 3. K(k) and K(k’) are com-
plete elliptic integrals of the first kind.

The finding of 8 as a function of the angle ¢ and the
ratio of the radii R/r of the line presents a basic diffi-
culty. To find this relation, mapping II should be stud-
ied more closely.

To the arbitrarily selected values of the parameters
@, 8, and v there corresponds the region w in which
points 4 and 6 may not coincide, as in the case in Fig.
4. Hence, in the case of interest to us, «, 8, and ¥
should be determined by means of the three conditions:
1) Ige R/7 has the selected value, 2) the angle ¢ has the
selected value, 3) points 4 and 6 coincide.

These conditions written in analytical form appear
as follows:

lg R _ 10 (t = y)dt )
v 2JaNVIE=Bl =0+ U0t a
T 1o (t — v)dt
1(2 ¢> 20 V=80 -0+ Dt + ) (©)
i = U= v)dt )
2 2V VUE-B—0)(+ D)0+ a
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Fig. 4—Displacement of points 4 and 6.

With the help of classical transformations we express
these relations by means of elliptic integrals:*

7 1
lg. — = NPT [(@ — Doy, k) — (a+ MKE)] (&)
AL
B4+ Da @
S Te= N [(1 4+ V) E, k) — TI(¥, ps, )] (9)
Yl L
B+ Da g+1
¥ = arcsin Eﬁj)—’y
Blv + 1)
T 1
e [(v—= B)K(k a 3, R
; \/a<6+1)[(7 BYK (k) 4 (84 a)ll(ps, k)] (10)
_ Bla — 1) “—a——-1.
B+ Da g+ 1

In these equations K (k) is the complete elliptic integral
of the first kind, F(¥, k) is the incomplete elliptic in-
tegral of the first kind, II(p, &) is the complete elliptic
integral of the third kind, and (¥, p, k) is the incom-
plete elliptic integral of the third kind. The mathe-
matical procedure leading to the finding of the values of
8, a, and v (unfortunately, the latter two parameters
must also be evaluated) corresponding to the values
of R/r and ¢ which interest us is presented in Ap-
pendix 1.

The values obtained for the impedance as a function
of the angle 2¢ are shown in Fig. 5 for ratios R/r=23.37,
2.72, 2.6, 2.3. '

4 See; e.g., P. Byrd and M. Friedman, “Handbook of Elliptic In-
tegrals for Engineers and Physicists,” Springer-Verlag, Berlin, Ger-
many; 1954.

W, Grobner and N. Hofreiter, “Integraltafel,” Springer-Verlag,
Berlin, Germany; 1949.
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Fig. 5—Characteristic impedance as a function of the angle 2¢
for various values of the ratios R/7. d=0.
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(b) )

Fig. 6—Capacity distribution. (a) Co—capacity between the thin
outer conductors, (b) Ca—total capacity of the system without the
inner conductor. Ci = Ca— Co capacity introduced by thickening
the walls. (c) Cz—total capacity of the system with thin outer
walls. Ci=Cp— Co=capacity introduced by the central con-
ductor.

When the thickness of the walls is not neglected; i.e.,
the line shown in Fig. 1(a), the capacity introduced by
the central conductor and the capacity introduced by
the thickening of the walls may be considered as adding
to each other (Fig. 6) as long as the increase in wall
thickness does not affect the field distribution in the
vicinity of the central conductor and the introduction
of the central conductor does not affect the field dis-
tribution in the gaps between the outer conductors.
The greater the radius of the outer conductor in relation
to both the radius of the central conductor and the
thickness of the walls of the outer conductor, the more
correct this assumption seems.

The impedance calculations presented below are
based on the determination of the additional capacity
introduced into the system by the thickening of the
walls of the outer conductor on the basis of formulas
derived by Bochenek? and the additional capacity
introduced by the central conductor on the basis of the
results obtained here.



164

[
(74

28
18 4
4
12 |
10
084
06 |

[ 2

02 |

T T

Fig. 7—Ratio of capacity introduced by the inner conductor to the
capacity introduced by thickening the walls for various angles (2¢).
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Fig. 8—Solid line—characteristic impedance as a function of the
angle 2¢ for R/r =2.6 and the various values of d/R. Dotted lines
—approximations obtained by a variational method by Collin!
for d=0.

The ratio of the capacity introduced by the inner
conductor C; to the capacity introduced by the thicken-
ing of the walls C, is represented in Fig. 7. This curve
gives an idea of the influence of both factors on the
values of the impedance.

The next curve (Fig. 8) represents the impedance for
the ratio R/r=2.6, wall thickness d/R=0, 0.05, 0.1,
and 0.15 as a function of the angle 2¢. For comparison,
the curves obtained by Collin! for the case d =0 are also
given in the figure.

Fig. 9 presents a comparison of the approximate value
of the characteristic impedance obtained by Collin! by a
variational method for »r=0 and d=0 with the exact
value obtained by means of homographic mapping.

MODE OF THE SECOND TYPE

This mode [Fig. 1(c)] corresponds to the basic mode
in a coaxial line distorted by the slotting of the outer
conductor. It seems of interest to investigate the effect
of this distortion on the values of the wave impedance.
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Fig. 9—Solid line—characteristic impedance as a function of angle
2¢ for R/r=2.6 and d=0. Dotted line—approximation obtained
by a variational method. (See reference 1.)
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Fig. 10—Boundary problems obtained by successive conformal map-
pings. Arabic numerals in the circles denote points corresponding
to each other. Boundary conditions for the function u are also
given. (a) Boundary conditions problem I--plane o, (b) boundary
problem I1—plane =, (c) boundary problem III-—plane W.

As in the preceding case, we use three successive con-
formal mappings:

w=1lg.z 11)
o= — i Viy = Dy — o)y
2(v + B8
’ (t — B)dt .
lg.R; (12
o U+EMVE+0)E+ )+ 1) Tl 12)
w = C1fT & + m (13)
o V=0t +e)(t+ 1)

The boundary problems corresponding to these map-
pings are shown in Fig. 10.

The impedance in system II [Fig. 10(b)] is defined
by only one parameter a. Its value is found by means of
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Fig. 11—Characteristic impedance as a function of parameter a.

mapping in the system III, identically as in the pre-
ceding case.

The dependence of the impedance on « is expressed
by the formula: '

1 wo K(k
gy =Lyl B (14)
4 e K(F)
where
k= Va B =+v1—a

This relation is shown in Fig. 11.

Similarly as in the previous case, the calculations lead
us to the following system of equations giving the rela-
tion between the parameters «, 3, ¥ and the quantities
R/r and ¢:

R Vr(y — @)

lg, = o
& (v+6)x/'y—1

[a+mma

1l -«

- ;—_—; (v + B)1L(ps, k)] ; (15)
. « - 1

b=va pm=-07D

v — a
™ Vi = Dy

— S aF\I/k
2 T G eV —a [w+>< )

—§+ﬂ%&mwﬂmm
Y
k'=\/1—a p2="-’y~a
Y
. B
¥ = arcsin —
B+«
T V(v—l)(v—a)v[BJrv ]
- = T (s, K(#
) 7_}_}@ v — (93 ) ()
[ a—1 an
F=+1—«a p3 = — —— -
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Fig. 12—Solid line—characteristic impedance of the second mode as
a function of the angle 2¢. Dotted line—result of the simplified
calculation (see text).

The procedure for determining «, B, and v for the
values of the ratio R/r and the angle ¢, of interest to us,
is given in Appendix II.

The values obtained for the ratio R/7r=2.72 as a
function of the angle 2¢ are given in Fig. 12. Also given
in this figure is the curve of the impedance calculated by
assuming that the capacity of the coaxial line changes
proportionally to the angle subtended by the cross sec-
tion of the outer conductor. As may be seen, this type
of simplification of the impedance calculation gives re-
sults which depart considerably from reality; the actual
impedance increases more slowly than the impedance
calculated in the above approximative manner. This
should have been expected when one considers that the
field lines become more dense at the boundary of the
gap.

In the case of the type of wave being considered here,
it seems that the influence of the thickness of the outer
conductor on the impedance will be considerably smaller
than in the preceding case since both parts of the outer
conductor are at the same potential.

ApPPENDIX |

CALCULATION OF THE FIRST TRANSMISSION MODE

In the range of the values of the parameters of in-
terest to us, (8)—(10) can be replaced, for purposes of
calculation, by simplified formulas which -are derived
from the assumption that

g>1, B>y, and B> a

r
g, — =~ — |aE(%) — (« K(¥ 18
g \/aﬂ[ (&) — (a + v)K(E)] (18)
T 1 _
— — = —— |y F(¥,k aE(Y, k) — +/atg¥ 19
S = 6= = R ) B, B) — Vaigd] (19)

S 1[( E®)]. (20)
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E(k") is the complete elliptic integral of the second kind.

/‘/a -1 /‘/T
B = —
o a
. 1/—7‘“
arc sin .
vy +1

For the range of the angle ¢ and ratios R/7, of interest
to us, these assumptions are correct and can be directly
verified by substituting the results obtained into the
exact formulas.®

We insert in (18) the expression for y+a obtained
from (20) and we obtain (21)

-1 ¥

Il

_ VaE(E)
VB = . ) (21)
R0 KW

The system (19) through (21) obtained in this way
is a convenient point of departure for the numerical
calculations. ‘

The computational procedure is as follows: we as-
sume a value for R/r and a value for o. In this way the
parameters of the system are uniquely defined. Only
the corresponding value of the angle ¢ has to be found.
To do this, we insert the values taken for a and R/r
into (21) and determine § from this equation. We insert
the value found for 8 and the value taken for « into (20)
and obtain y. We substitute the values of «, 8, and 5
into (19) and obtain the angle ¢. By taking different
values of a we can change ¢ in the interval of interest
to us. The value of 8 obtained in the course of the com-
putations uniquely determines the impedance (4),

for 8 1 p 591.4
or : ¢ = —_
lg4+/8

As may be seen, the calculations are quite simple,
since they reduce to looking up the elliptic integrals in
the tables and to making some arithmetical calculations.

5 The correctness of the assumption that $3>1 can also be checked
in the following way: 8 is a parameter which uniquelv determines the
impedance; with an increase in 8 the impedance decreases. The im-
pedance for the system with the central conductor is smaller (and
therefore B is greater) than the impedance (the value of 8) for the
system without the central conductor. For the system without the
central conductor, the corresponding value of impedance can be
readily found by means of homographic mapping.
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AprENDIX 1]
CALCULATION OF THE SECOND TRANSMISSION MODE

In the ranges of the angle ¢ and the ratios R/r of
interest to us, y>>1, and therefore (15) through (17)
can be replaced for purposes of calculation by simplified
formulas:

R
lg, — = ——
r v+ 8
.[V[m) — E®)] + BIyK (k) — aK (k) — E<k>1], (22)
’Y b
- Vv {
¢ = a)F (¥, B
; ¢ _—— B+ a)F( )
_7+B~aH(\I’,p, k,)]; (23)
¥
r Y
T K(&)[1 + 24
b &)H[1 + 8 (24)
E=+va k=+vl-a p=—1
¥ = arcsin —E—
B+«

We insert in (22) the expression for 8 obtained from
(24) and we obtain (25):

R T _
y |:K(k’) lg =~ K<k>} A VIERKR)

T R
-i—?K(k)(l—{—a)—K(k’)lge—:O. (25)
7

The calculations are made as follows: we assume a
value for R/r and a value for a. To find the angle ¢, we
insert the values taken for R/r and « into (25) and
from this equation determine vy. We insert the value
found for v and that taken for « into (24) and obtain
B. We put the values of «, 8, and v into (23) and
obtain the angle ¢. By taking various values for a we
can change ¢ into the interval in which we are inter-
ested. The value of a uniquely determines the imped-
ance (14).
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